GIS-based Near Real-time InSAR Method for Monitoring Slope Movement

Principal Investigator: Prof. Lin Hui

Start Date: 2006/11/04
End Date: 2008/01/31
Type of Grant: South China Program
Awarded Amount: HK$163,800

Hong Kong has a long history of landslide disasters. From the Government¡¦s records, there are 57,000 register slopes and 39,000 of those were constructed before 1977 which the safely standards are considered to be insufficient nowadays. The Government had put considerable efforts and resources to improve the slope safety. However, the progress of slope improvement works is still slow and only 3,500 high priority pre-1977 slopes can be improved by 2010.

Remote Sensing Satellite and the Interferometric Synthetic Aperture Radar (InSAR) are the promising technologies to monitor small land surface movement over extensive areas and with extremely high temporal resolution. However, current technologies are considered as ¡§post-event¡¨ analysis which the results can be obtained after days or weeks of computation. This proposed research aims to improve the computation methods such that the InSAR analysis results can be produced in near real time domain (i.e. within 12 hours of computation).

The project team proposes to address the challenging issues through studies the bottlenecks of the current computation methods and the optimal use of the radar data received by the CUHK Satellite Remote Sensing Receiving Station. Two or more radar images acquired over the same slope will be analyzed using a specific InSAR approach in order to reveal subtle movement on the ground surface. The InSAR results will be further analyzed using the Geographic Information System (GIS), with its database consisting of DEM, aerial photographs ,and other geological information, to generate a wide range of value-added products such as geological profiles, contour map, animation, three dimensional view, and flythrough of the study area.

Outcomes of the proposed research include operational procedures for near real-time operation of radar InSAR based on previous works done by PI and Co-Is. These outcomes will be easily applied in slope monitoring and ground deformation in Hong Kong and neighboring areas.