Roles of Tropical Indian and Pacific Oceans in Summertime South China Sea Climate Variability

Principal Investigator: Prof. WU Renguang

Start Date: 2013/01/01
End Date: 2015/12/31
Type of Grant: General Research Fund

Being surrounded by land regions with large population, the South China Sea (SCS) climate variability is closely related to the development and peopleˇ¦s lives in these regions. Being situated between the North Indian Ocean and the western North Pacific, between East Asia and Indonesia-Australia, the SCS climate variability is not only connected to the variability of major monsoons in these regions, but also plays an important role in connecting the variability among these monsoons. The SCS serves as pathway for moisture transport from the North Indian Ocean and the Southern Hemisphere to China. The SCS also serves as a medium linking the remote forcing of El Nino-Southern Oscillation (ENSO) and tropical Indian Ocean to regional climate in the surrounding regions of dense population. The SCS is also a region of activity of tropical cyclones/typhoons that pose a great threat on coastal southern China, including Hong Kong. There is, however, a lack of systematic study of the SCS climate variability and its remote connections.

The objective of this project is to investigate summertime climate variability in the SCS region and the roles of regional air-sea interactions and remote forcing of the tropical Indian and Pacific Ocean regions. The issues to be addressed include: 1) How the atmosphere and ocean interact in the SCS region and how this changes spatially and seasonally; 2) What are the direct and indirect influences of ENSO on summertime SCS climate and the respective processes; 3) What are the connections of summertime SCS climate with the tropical Indian Ocean climate modes and the respective processes.

The expected outcomes of the research are: 1) The characteristics and processes of air-sea interactions in the SCS region will be unraveled; 2) The roles of regional air-sea interaction and remote forcing in summertime SCS climate variability will be delineated; 3) The processes for different types of ENSO influences on summertime SCS climate will be revealed; 4) The connections between the SCS and tropical Indian Ocean climate anomalies will be identified.